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Abstract. Almost any cryptographic scheme can be described by tweak-
able polynomials over GF (2), which contain both secret variables (e.g.,
key bits) and public variables (e.g., plaintext bits or IV bits). The crypt-
analyst is allowed to tweak the polynomials by choosing arbitrary values
for the public variables, and his goal is to solve the resultant system of
polynomial equations in terms of their common secret variables. In this
paper we develop a new technique (called a cube attack) for solving such
tweakable polynomials, which is a major improvement over several pre-
viously published attacks of the same type. For example, on the stream
cipher Trivium with a reduced number of initialization rounds, the best
previous attack (due to Fischer, Khazaei, and Meier) requires a barely
practical complexity of 255 to attack 672 initialization rounds, whereas
a cube attack can find the complete key of the same variant in 219 bit
operations (which take less than a second on a single PC). Trivium with
735 initialization rounds (which could not be attacked by any previous
technique) can now be broken with 230 bit operations. Trivium with 767
initialization rounds can now be broken with 245 bit operations, and
the complexity of the attack can almost certainly be further reduced to
about 236 bit operations. Whereas previous attacks were heuristic, had
to be adapted to each cryptosystem, had no general complexity bounds,
and were not expected to succeed on random looking polynomials, cube
attacks are provably successful when applied to random polynomials of
degree d over n secret variables whenever the number m of public vari-
ables exceeds d + logdn. Their complexity is 2d−1n + n2 bit operations,
which is polynomial in n and amazingly low when d is small. Cube at-
tacks can be applied to any block cipher, stream cipher, or MAC which is
provided as a black box (even when nothing is known about its internal
structure) as long as at least one output bit can be represented by (an
unknown) polynomial of relatively low degree in the secret and public
variables.

Keywords: Cryptanalysis, algebraic attacks, cube attacks, tweakable
black box polynomials, stream ciphers, Trivium.

1 Introduction

Solving large systems of multivariate polynomial equations is considered an ex-
ceedingly difficult problem, which had been studied extensively over many years.

A. Joux (Ed.): EUROCRYPT 2009, LNCS 5479, pp. 278–299, 2009.
c© International Association for Cryptologic Research 2009



Cube Attacks on Tweakable Black Box Polynomials 279

The problem is NP-complete even when the system contains only quadratic equa-
tions modulo 2 (see [18]), and it provides the main protective mechanism in many
cryptographic schemes.

The main mathematical tool developed in order to solve such equations is
the notion of Grobner bases (see [1],[2] and [3]), but when we try to apply it in
practice to random equations with more than 100 variables it usually runs out of
space without providing any answers. The much simpler linearization technique
considers each term in these polynomials as a new independent variable, and
tries to solve the resultant system of linear equations by Gauss elimination.
Its main problem is that it requires a hugely overdefined system of polynomial
equations. For example, a system of 256 polynomial equations of degree d = 16
in n = 256 variables over GF (2) is expected to have a unique solution, but in
order to find it by linearization we have to increase the number of equations
to the number of possible terms in these equations, which is about nd = 2128.
There are several improved algorithms such as XL and XSL (see [3],[4],[5], [6]
and [7]) which reduce the number of required equations and the time and space
complexities, but they are still completely impractical for such sizes.

The main observation in this paper is that the polynomial equations defined
by many cryptographic schemes are not arbitrary and unrelated. Instead, they
are typically variants derived from a single master polynomial by setting some
tweakable variables to any desired value by the attacker. For example, in block
ciphers and message authentication codes (MAC’s) the output depends on key
bits which are secret and fixed, and on message bits which are public and control-
lable by the attacker in a chosen plaintext attack. Similarly, in stream ciphers
the output depends on secret fixed key bits and on public IV bits which can
be chosen arbitrarily. By modifying the values of these tweakable public bits,
the attacker can obtain many derived polynomial equations which are closely
related. What we show in this paper is that when the master polynomial is suf-
ficiently random, we can eliminate with provably high probability all of its nd

nonlinear terms by considering a surprisingly small number of only 2dn tweaked
variants, and then solve a precomputed version of the resultant n linear equa-
tions in n variables using only n2 bit operations. For example, when d = 16 and
n = 10, 000, we can simultaneously eliminate all the 2200 nonlinear terms by
considering only the 220 derived polynomial equations obtained by encrypting
220 chosen plaintexts defined by setting 20 public bits to all their possible values.
After this “massacre” of nonlinear terms, the only thing left is a random looking
system of linear equations in all the secret variables, which is easy to solve. In
case the master polynomial is not random, there are no guarantees about the
success rate of the attack, and if the degree of the master polynomial is too high,
the basic attack technique is not likely to work. For these cases, we describe in
the appendix several generalizations which may prove to be useful.

To demonstrate the attack, consider the following dense master polynomial
of degree d = 3 over three secret variables x1, x2, x3 and three public variables
v1, v2, v3:
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P (v1, v2, v3, x1, x2, x3) = v1v2v3 + v1v2x1 + v1v3x1 + v2v3x1 + v1v2x3 + v1v3x2+
v2v3x2+v1v3x3+v1x1x3+v3x2x3+x1x2x3+v1v2+v1x3+v3x1+x1x2+x2x3+x2+

v1+v3+1

Third degree polynomials over six variables can have
(
6
3

)
+

(
6
2

)
+

(
6
1

)
+

(
6
0

)
= 42

possible terms, and thus there are 242 such polynomials over GF (2). To eliminate
all the 35 possible nonlinear terms by Gauss elimination, we typically need 35
such polynomials. By setting the three public variables v1, v2, v3 to all their
possible 0/1 values, we can get only 8 derived polynomials, which seem to be
insufficient. However, summing the 4 derived polynomials with v1 = 0 we get
x1 + x2, summing the 4 derived polynomials with v2 = 0 we get x1 + x2 + x3,
and summing the four derived polynomials with v3 = 0 we get x1 + x3, which
simultaneously eliminated all the nonlinear terms. When we numerically sum
modulo 2 the values of the derived polynomials in these three different ways
(instead of symbolically summing the polynomials themselves), we get a simple
system of three linear equations in the three secret variables. Consequently, the
master nonlinear polynomial can be solved by a chosen message attack which
evaluates it for just 8 combinations of values of its public variables.

Since we deal with dense multivariate polynomials of relatively high degree,
their explicit representations are extremely big, and thus we assume that they
are provided only implicitly as black boxes which can be queried. This is a
natural assumption in cryptanalysis, in which the attacker can interact with an
encryption black box that contains the secret key. A surprising consequence of
our approach is that we can now attack completely unknown cryptosystems (such
as the CRYPTO-1 algorithm implemented in millions of transportation smart
cards, whose design was kept as a trade secret until very recently) which are
embedded in tamper resistant hardware, without going through the tedious and
expensive process of physical reverse engineering! Since the number of queries
we use is much smaller than the number needed in order to uniquely interpolate
the polynomial from its black box representation, our algorithm manages to
break such unknown cryptosystems even when it is information theoretically
impossible to uniquely determine them from the available data.

Some of the issues we deal with in this paper are how to efficiently estimate
the degree d of a given black box multivariate polynomial, how to solve high
degree polynomials which can be well approximated by low degree polynomials
(e.g., when they only contain a small number of high degree terms which almost
always evaluate to zero), and how to easily find the linear equations defined by
the sums of these huge derived polynomials. Note that in the black box model
the attacker is not allowed to perform symbolic operations such as asking for
the coefficient of a particular term, evaluating the GCD of two polynomials,
or computing their Grobner basis, unless he first interpolates them from their
values by a very expensive procedure which requires a huge number of queries.

We call this cryptanalytic technique a cube attack since it sets some pub-
lic variables to all their possible values in n (not necessarily disjoint) (d − 1)-
dimensional boolean cubes, and sums the results in each cube. The attack is not
completely new, since some of its ideas and techniques were also used in previous
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heuristic attacks on various cryptosystems, but we believe that this is the first
time that all these elements were brought together, accompanied by careful
analysis of their complexity and success rate for random black box
polynomials.

Cube attacks should not be confused with the interpolation attacks of Jakob-
sen and Knudsen ([17]), which deal with cryptosystems whose basic operations are
quadratic polynomials over all or half of the input. Such polynomials are univariate
or bivariate polynomials over GF (2n), and thus have fairly compact representa-
tions which can be easily interpolated from sufficiently many input/output pairs.
Our attack deals with huge black box multivariate polynomials over GF (2) which
cannot possibly be interpolated from the available data.

The attack is remotely related to the square attack (see [8]) which considers the
special case of cryptographic schemes whose secret bits are grouped into longer
words, which are arranged in a two dimensional square. Cube attacks make no such
assumptions about how the secret bits in the polynomial equations are related to
each other, and thus they can be applied in a much broader set of circumstances.

The attack is also superficially similar to integral attack (also called saturation
attack in the literature) and to high order differential attack which sum the
output of cryptosystems over various subsets of input variables. However, as
explained in section 3, this is just an artifact of the special field GF (2) in which
addition and subtraction are the same operation, and over a general field GF (pk)
with p > 2 we have to use a different way to apply cube attacks.

Several previously published techniques try to break particular schemes by
highly heuristic attacks that sum output values on some Boolean cubes of public
variables. These related attacks include [26], [27], [28], [29], [30] and [31], and are
collectively referred to as chosen IV statistical attacks. Compared to these attacks,
the cube attack is much more general, is applicable to block ciphers in addition to
stream ciphers, and has a better-defined preprocessing phase which does not need
adaptations for each given scheme. As a result, cube attacks can be applied with
provable success rate and complexity even when the cryptosystem is modelled by
a random black box polynomial about which nothing is known. The most impor-
tant difference is that in cube attacks each summation leads to an easily solvable
linear equation (in any number of secret key bits), whereas in chosen IV statistical
techniques there are many attack scenarios, and each summation typically leads
only to a statistically biased expression (in a small subset of the secret key bits).
Such a bias has to be amplified by many repetitions using a much larger amount
of data before it can be used in order to find the key. The most convincing demon-
stration of this difference is the best previously known chosen IV attack on the
Trivium stream cipher [28]: When the number of initialization rounds is reduced
to 672, this attack has a relatively high complexity of 255 operations, whereas the
standard unoptimized cube attack can perform full key recovery in just 219 bit
operations; When the number of initialization steps is increased to 735, no pre-
viously published attack is faster than exhaustive search, whereas the same cube
attack can easily perform full key recovery in 230 bit operations. These and further
results about Trivium are discussed in the appendix.
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2 Terminology

This section describes the formal notation we use in the rest of the paper. The
attacker is given a black box that evaluates an unknown polynomial p over
GF (2) of n + m inputs bits (x1, .., xn, v1, .., vm) and outputs a single bit. The
polynomial is assumed to be in Algebraic Normal Form, namely, the sum of
products of variables. The input bits x1, .., xn are the secret variables, while
v1, .., vm are the public variables. The solution consists of two phases. During
the preprocessing phase, the attacker is allowed to set the values of all the
variables (x1, .., xn, v1, .., vm) and to use the black box in order to evaluate the
corresponding output bit of p. This corresponds to the usual cryptanalytic setting
in which the attacker can study the cryptosystem by running it with various keys
and plaintexts. During the online phase, the n secret variables are set to unknown
values, and the attacker is allowed to set the values of the m public variables
(v1, .., vm) to any desired values and to evaluate p on the combined input.

To simplify our notation, we ignore in the rest of this section the distinction
between secret and public variables, and denote all of them by x1, ..., xn. Since
x2

i = xi modulo 2, the terms tI in the polynomial can be indexed by the subset
I ⊆ {1, ..., n} of the variables which are multiplied together, and every poly-
nomial can be represented by sums of tI for a certain collection of subsets I.
We denote by P

n
d the set of all the multivariate polynomials over GF (2) with n

variables and total degree bounded by d.
Given a multivariate polynomial p and any index subset I, we can factor the

common subterm tI out of some of the terms in p, and represent the polynomial as
the sum of terms which are supersets of I and terms which are not supersets of I:

p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn)

We call pS(I) the superpoly of I in p. Note that for any p and I, the superpoly of I
in p is a polynomial that does not contain any common variable with tI , and each
term in q(x1, .., xn) misses at least one variable from I.

To demonstrate these notions, let

p(x1, x2, x3, x4, x5) = x1x2x3 + x1x2x4 + x2x4x5 + x1x2 + x2 + x3x5 + x5 + 1

be a polynomial of degree 3 in 5 variables, and let I = {1, 2} be an index subset
of size 2. We can represent p as:

p(x1, x2, x3, x4, x5) = x1x2(x3 + x4 + 1) + (x2x4x5 + x3x5 + x2 + x5 + 1)

where

tI = x1x2

pS(I) = x3 + x4 + 1
q(x1, x2, x3, x4, x5) = x2x4x5 + x3x5 + x2 + x5 + 1

Definition 1. A maxterm of p is a term tI such that deg(pS(I)) ≡ 1, i.e. the
superpoly of I in p is a linear polynomial which is not a constant.
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Any subset I of size k defines a k-dimensional Boolean cube of 2k vectors CI

in which we assign all the possible combinations of 0/1 values to variables in I,
and leave all the other variables undetermined. Any vector v ∈ CI defines a new
derived polynomial p|v with n − k variables (whose degree may be the same or
lower than the degree of the original polynomial). Summing these derived poly-
nomials over all the 2k possible vectors in CI , we end up with a new polynomial,
which is denoted by pI �

∑
v∈CI

p|v. In the next section, we prove that this
polynomial has a simple alternative definition, which makes it extremely useful
in cryptanalytic applications.

3 The Main Observation

Theorem 1. For any polynomial p and subset of variables I, pI ≡ pS(I) modulo 2.

Proof. Write p(x1, .., xn) ≡ tI ·pS(I) +q(x1, .., xn). We first examine an arbitrary
term tJ of q(x1, .., xn), where J is the subset containing the variable indexes
that are multiplied together in tJ . Since tJ misses at least one of the variables
in I, it is added an even number of times (for the two possible values of any one
of the missed variables, where all the other values of the variables are kept the
same), which cancels it out modulo 2 in

∑
v∈C p|v.

Next, we examine the polynomial tI · pS(I): All v ∈ CI zero tI , except when
we assign the value 1 to all the variables in I. This implies that the polynomial
pS(I) (which has no variables with indexes in I and is thus independent of the
values we sum over) is summed only once, when tI is set to 1. Consequently, the
formal sum of all the derived polynomials is exactly the superpoly pS(I) of the
term we sum over. �

Basically, the theorem states that the sum of the 2k polynomials derived from
the original polynomial p by assigning all the possible values to the k variables in
I, eliminates all the terms except those which are contained in the superpoly of I
in p. The summation thus reduces the total degree of the master polynomial by
at least k, and if tI is any maxterm in p, this sum yields a linear equation in the
remaining variables. For example, if we sum the polynomial p(x1, x2, x3, x4, x5)
defined in the previous section over the four possible values of x1 and x2 in
the maxterm tI = x1x2, we get the linear expression pS(I) = (x3 + x4 + 1).
Consequently, all the cryptanalyst has to do in order to solve a tweakable master
polynomial of degree d is to find sufficiently many maxterms in it, and for each
maxterm to sum at most 2d−1 derived polynomials. Note that he only has to add
the 0/1 values of these derived polynomials (which he can obtain via a chosen
plaintext attack), and not their huge symbolic expressions. The summed bit is
then equated with a fixed linear expression which can be derived from the master
black box polynomial during a separate preprocessing stage, since it is not key-
dependent. For low degrees such as d = 16, the derivation of the right hand side
of each linear equation during the online phase of the attack requires at most
215 = 32768 additions of single bit values, which takes a negligible amount of
time.
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Over a general field GF (pk) with p > 2, the correct way to apply cube attacks
is to alternately add and subtract the outputs of the master polynomial with
public inputs that range only over the two values 0 and 1 (and not over all
their possible values of 0, 1, 2, ..., p−1), where the sign is determined by the sum
(modulo 2) of the vector of assigned values. In this form, they are reminiscent
of FFT computations. Cube attacks are thus more closely related to high order
differential attacks than to integral attacks, but they do not use the same formal
operator. For example, consider the bivariate polynomial p(x, v) = 4x2v3+3x2v5

(mod 7) of degree 7. The formal derivative of this polynomial with respect to v
is the 6-degree polynomial p′v(x, v) = 5x2v2 +x2v4 (mod 7) whereas our numeric
difference yields p(x, 1)− p(x, 0) = (4x2 + 3x2)− (0 + 0) = 0 (mod 7) which has
degree 0. In addition, cube attacks use algebraic rather than statistical techniques
to actually find the secret key.

4 The Preprocessing Phase

Given an explicit description of the master polynomial, it is easy to split it
into p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn) for any term tI . However, when the
exponentially long master polynomial is given only as a black box, it is not clear
how to find this representation, and how to store it in a compact way.

When tI is a maxterm, the issue of compact representation becomes easy,
since we only have to know its superpoly pS(I) in order to apply the attack,
and this expression is a short linear combination of some of the secret variables
xi, with the possible addition of the constant 1. Note that we can eliminate all
the public variables vi that are not summed over from this linear expression by
fixing each one of them to 0 (or to 1) during the summation.

In order to actually find pS(I) for a given black box master polynomial and a
maxterm tI in it, we use a separate preprocessing phase in which the attacker is
given the extra power of tweaking both the public and the secret variables:

Theorem 2. Let tI be a maxterm in a black box polynomial p. Then:

1. The free term in pS(I) can be computed by summing modulo 2 the values of
p over all the inputs of n + m variables which are zero everywhere except on
the d − 1 variables in the summation cube CI .

2. The coefficient of xj in the linear expression pS(I) can be computed by sum-
ming modulo 2 all the values of p for input vectors which are zero everywhere
except on the summation cube CI and all the values of p for input vectors
which are zero everywhere except on the summation cube and at xj which is
set to 1.

The proof is based on the observation that in a linear expression, the coefficient
of any variable xj is 1 if and only if flipping the value of xj flips the value of
the expression, and the free term can be computed by setting all the variables
to zero.

In the rest of this section, we distinguish between the cases of random and
non-random master polynomials.
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4.1 Preprocessing Random Polynomials

In many cryptographic schemes, the mixing of the inputs is so thorough that the
representation of each ciphertext bit as a fully expanded polynomial function of
the n key bits and m plaintext bits can be viewed as a random polynomial:

Definition 2. A random polynomial of degree d in n+m variables is a polyno-
mial p ∈ P

n+m
d such that each possible term of degree at most d is independently

chosen to occur with probability 0.5.

In fact, the notion of randomness we need in order to lower bound the success
probability of cube attacks is considerably weaker, since the only terms which
play any role in the attack are those that correspond to maxterms in p:

Definition 3. A d-random polynomial with n+m variables is a polynomial p ∈
P

n+m
d such that each possible term of degree d which contains one secret variable

and d − 1 public variables is independently chosen to occur with probability 0.5,
and all the other terms can be chosen arbitrarily.

In any d-random polynomial, any term tI which is the product of d − 1 public
variables vi has an extremely high probability to be a maxterm: Its corresponding
superpoly is a polynomial of degree at most 1, and it is a polynomial of degree 0
only when for all the secret variables xi the terms tIxi are not chosen to appear
in the polynomial. The probability of this event is 2−n.

For any two terms tI1 and tI2 which are the products of d−1 public variables,
we get independent random choices of their corresponding superpolys, even when
I1 and I2 are almost identical. For example, when d = 4, I1 = {1, 2, 3}, and
I2 = {1, 2, 4}, each one of the two terms v1v2v3x5 and v1v2v4x5 occurs in p with
probability 0.5 independently of the other. Since we do not need disjoint subsets
of public variables as our maxterms, we only need about d + logd n tweakable
public variables in order to pack n different maxterms among their products,
since

(
d+logd n

d

)
=

(
d+logd n
logd n

)
≈ dlogd n = n. In particular, when d = 16 and

n = 10, 000, it suffices to have only m = 20 tweakable public variables to apply
the cube attack, since

(
20
15

)
= 15, 504 > n. Note that the computations of these

maxterms are not independent since we reuse the same derived polynomials in
many overlapping cube summations, but the results of the computations are
independent linear combinations of the secret variables.

After choosing n random maxterms, the attacker defines an n × n matrix A
whose rows contain their corresponding superpolys. If the matrix is nonsingular,
the attacker precomputes and stores A−1 in order to reduce the complexity of
the linear algebra in the online phase of the attack from O(n3) to O(n2).

Since A is a random matrix in which each entry is independently selected with
probability 1/2, it is very easy to compute the probability that it is nonsingular:

Lemma 1. The probability that an n × n random binary matrix over GF (2) is
invertible is

∏n
i=1(1 − 2−i) ≈ 0.28879

Proof. The proof is by a simple induction on the rows of the matrix.
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This is a constant probability, which can be made arbitrarily close to 1 during the
preprocessing phase by considering a few extra maxterms. For d = 16 n = 10, 000
and m = 20, there are 15, 504 possible superpolys to choose from, and the
probability that the rank of all these random linear expressions will be smaller
than 10, 000 is negligible.

Since the preprocessing phase has to be executed only once for each cryp-
tosystem whereas the online phase has to be executed once for each key, some
cryptanalytic attacks “cheat” by allowing extremely expensive operations dur-
ing an unbounded preprocessing phase which make the whole attack impractical.
When cube attacks are applied to random polynomials, the complexity of the
preprocessing phase is at most n times larger than that of the online phase of
the attack, and thus if one phase is practically feasible so is the other.

4.2 Preprocessing Nonrandom Polynomials

When the polynomial representation of the cryptosystem is not assumed to be
d-random, there are no guarantees about the success rate of the attack. The
basic questions we are faced with in this case are how to estimate the degree
d of the polynomial p which is only given as a black box, and how to choose
appropriate maxterms if they exist. We propose the following technique, which
is a variant of the random walk proposed in [28].

The attacker randomly chooses a size k between 1 and m and a subset I of
k public variables, and computes the value of the superpoly of I by numerically
summing over the cube CI (setting each one of the other public variables to
a static value, usually to zero). If his subset I is too large, the sum will be a
constant value (regardless of the choice of secret variables), and in this case he
has to drop one of the public variables from I and repeat the process. If his
subset I is too small, the corresponding pS(I) is likely to be a nonlinear function
in the secret variables, and in this case he has to add a public variable to I and
repeat the process. The correct choice of I is the borderline between these cases,
and if it does not exist the attacker can restart with a different initial I.

The best way to understand this process is to think about a (not necessarily
random) polynomial p in which all the terms have the same degree d, but contain
different proportions of secret and public variables. When we sum over subsets I
with d−2 public variables, we will get a purely quadratic polynomial in the secret
variables which corresponds to all those terms that contain the d − 2 variables
in I as their public variables and two additional secret variables. Linear terms
will not occur in this polynomial since every term which contains d − 1 public
variables is eliminated by at least one public variable which is not in I and is thus
set to zero. Note that for nonrandom polynomials, this quadratic expression may
be empty for some I (misleading us to believe that I is too large), but nonempty
for another I (indicating correctly that it is too small), and thus we may have
to restart the preprocessing with several initial I’s. When we sum over subsets I
with d−1 public variables, we will get a linear polynomial in the secret variables,
but again it may be empty. In particular, if all the terms in the nonrandom p
contain at least two secret variables, we will never be able to get any linear
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superpoly during the preprocessing phase, regardless of the choice of I. When
we sum over I with d public variables, we will get a key-independent constant,
which is zero or one depending on whether the unique term which is the product
of all the public variables in I does or does not occur in p. In this case we will
always act correctly by reducing the size of I. Finally, when we sum over an I
of size d + 1 or larger, we will always get the zero polynomial, since every term
in p misses at least one of the public variables in I, and will thus be added an
even number of times modulo 2.

For any choice of values for all the secret variables, we sum the 0/1 values of
p over the subcube CI of public variables, setting all the other public variables
to zero. This sum is a function of secret variables only, and we can test it for
linearity during the preprocessing phase (in which we are allowed to modify
the secret variables) by using any one of the efficient linearity tests which were
developed as part of the PCP theorem (see [9]).

One example of such a linearity test is the BLR test (see [10]), which chooses
vectors x, y ∈ {0, 1}n independently and uniformly at random, and verifies that
pS(I)[0] + pS(I)[x] + pS(I)[y] = pS(I)[x + y]. The test ensures that if pS(I) is
linear, the test always succeeds, whereas if pS(I) is far from being linear, the
test fails with high probability. The test is repeated sufficiently many times
until the attacker is convinced that pS(I) is very close to being linear (e.g.,
it it linear, except for a few high degree terms which almost always evaluate
to zero). By using the cube attack in this case, we can find most but not all
of the possible keys, which is good enough in our cryptanalytic application.
Note that in our preprocessing, almost all the functions we test are likely to be
nonlinear superpolys (which typically fail in one of the first few linearity tests,
thus requiring only a few cube summations) or easily detected constant functions,
whereas in the preprocessing done by Fischer Khazaei and Meier, almost all the
functions they test are balanced, and distinguishing them from slightly biased
functions requires a huge number of cube summations on average.

As in the random setting, the attacker stops when sufficiently many linearly
independent vectors are derived and A−1 can be computed. The online phase of
the attack is identical to the case of random polynomials.

There are many possible optimizations of this process. For example, summing
the values of p over subcubes with large intersections can be sped up by memo-
rizing various partial sums, and thus we do not have to start from scratch when
we add or eliminate one public variable from I in our proposed random walk
search technique. Another extension uses the freedom to choose the values of the
public variables that are not summed over. In case we get an empty superpoly
for a specific cube, and a non-linear superpoly for any of its sub-cubes, we can
still try to make the superpoly nonempty in order to get a maxterm by setting
some of the remaining public variables to one. If the result is still zero, we can set
some more of these variables to one. If the result is non-linear, we can set a few
public variables that are not summed over back to zero. Note that this random
walk over the values of the public variables we do not sum over is different from
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the previously described random walk over the subset of the public variables we
sum over.

A different attack scenario on non random polynomials uses the cube attack as
a distinguisher rather than as a key extraction procedure. For example, if some
output bit is a polynomial of degree at most d in the n + m input variables,
summing it over any d-dimensional cube of public variables will always give a
constant value (which depends on the summation set I, but not on the key,
and thus can be precomputed in the preprocessing phase), whereas in a random
cipher such a sum will be uniformly distributed. Since the attacker has to sum
over a single cube and does not have to solve any equations, the complexity of this
distinguisher is just 2d. Consequently, ANY cryptographic scheme in which d < n
and d < m can be distinguished from a random cipher by an algorithm which is
faster than exhaustive search, regardless of whether its polynomial representation
is random or not. A detailed description of the theory and applications of cube
distinguishers appearers in [19].

5 Applications to Block Ciphers

In chosen plaintext attacks on block ciphers, the public variables are the bits
of the plaintext. Since most block ciphers have a block size of at least 128 bits,
there is no shortage of tweakable variables.

Since the attack is using only a single bit from the ciphertext, it makes no
difference whether the cryptographic mapping is invertible or not. Consequently,
we can attack a keyed hash function (also known as a MAC, or message authen-
tication code) by using exactly the same techniques. An example of such an
attack on the keyed hash function MD6 can be found in [19].

The main problem in applying the cube attack to block ciphers is that they
usually contain many rounds, and the degree of the polynomial grows exponen-
tially with the number of rounds (until it hits the maximum possible value of
n+m). Several techniques that may help to overcome the problem of high degree
polynomials in block ciphers appear in the appendix.

6 Applications to Stream Ciphers

In the case of stream ciphers, the secret variables represent the key, and the
public variables represent the IV. The model assumes that the attacker can
simulate the cipher during the preprocessing phase, and can apply a chosen IV
attack during the online phase. Note that we can also use a known IV attack if
the stream cipher operates in the common counter mode that uses consecutive
binary numbers (such as the packet number or the time of day) as its IV’s, since
their least significant bits contain full subcubes of various dimensions.

Many proposed stream ciphers use one or more linear feedback shift registers
(LFSR), which are either filtered or combined by nonlinear functions to produce
the output. In this case, the degree of the output polynomial is only determined
by this function, is relatively small, is easy to bound, and does not increase when
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the cipher generates a large number of bits (many of which are kept hidden during
the initialization phase). The attack requires the knowledge of only one output
bit for several IV values, and we can choose its location arbitrarily. In particular,
we can choose a bit location in which the corresponding plaintext bit is known.
Typical examples of such locations include standard packet header bits, or the
high bits of ASCII characters which are known to be zero.

As an extreme example of the power of cube attacks, consider a long LFSR
with 10, 000 bits and a secret dense feedback polynomial, which is filtered by a
layer of 1, 000 S-boxes. Each S-box is a different secret mapping of 8 bits from
the LFSR into one output bit, and the connection pattern between the LFSR
and the S-boxes is also assumed to be secret. In each clock cycle, the cipher
outputs only one bit, which is the XOR of the outputs of all the S-boxes. Each
bit in the LFSR is initialized by a different secret dense quadratic polynomial
in 10, 000 key and IV bits. The LFSR is clocked a large and secret number of
times without producing any outputs, and then only the first output bit for any
given IV is made available to the attacker.

The attack is a structural attack which is based only on the general form of the
cryptosystem (as described in figure 1). Note that the attacker does not know the
secret LFSR feedback polynomial, the 1, 000 S-boxes, the LFSR/S-Box intercon-
nection pattern, the actual key/IV mixing function, or the number of dummy ini-
tialization steps. The only properties of this design which are exploited by the cube
attack are that the output of each S-box is a random looking polynomial of degree
16 (obtained by substituting quadratic expressions in each one of its 8 input vari-
ables), that the XOR of these S-boxes is also a polynomial of degree 16 (in the
10, 000 secret and public variables), and that we have sufficient tweaking power
over the generation of the first output bit. The attack uses only 220 output bits
(one for each IV value), which are summed in 10, 000 overlapping 15 dimensional
cubes (note that

(
20
15

)
= 15504 > 10000). The attacker can thus get 10, 000 linear

equations in 10, 000 variables, which he can easily solve by using the precomputed
inverse of the coefficient matrix. This stream cipher can thus be broken in less than
230 bit operations, even though it could not be attacked by any previous technique,
including correlation attacks or the analysis of low Hamming weight LFSR modi-
fications (see for instance [11],[12],[13],[14],[15], and [16]).

We have experimentally tested the cube attack on this stream cipher, in order
to rule out the possibility that the black box polynomials which represent this
stream cipher have some unexpected properties that foil the attack. In all our
tests, the attack behaved exactly as expected under the assumption that the
polynomials are d-random.

Some stream ciphers such as LILI and A5/1 use clock control in order to foil
correlation attacks. If A5/1 had used its clock control only when producing the
output bits (but not during the initialization rounds), it would have been trivial
to break it with a straightforward cube attack, which uses only the first output
bit produced for each IV value.

Other types of stream ciphers such as Trivium (see [21]) include a small
amount of nonlinearity in the feedback of the shift register, and thus the degree
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of the output polynomial grows slowly over time. Since the attacker needs only
the first output bit for each IV, it may be possible to apply the cube attack to
such schemes, provided that they do not apply too many initialization rounds
in which no output is produced. Results of the attack on simplified variants of
Trivium that apply fewer initialization rounds are given in appendix B.

If the attacker is given more than one output bit in each execution of the
stream cipher, he can slightly reduce the number of public variables required in
the attack by summing the outputs of several polynomials pi defining different
output bits. This way he can get more than one linear equation for each maxterm
during the preprocessing phase, and thus he can use fewer tweakable bits and
use a smaller number of expensive restarts (which use many initialization steps)
of the stream cipher during his attack.

An interesting observation is that unlike the case of other attacks, XOR’ing the
outputs of several completely unrelated stream ciphers does not provide enhanced
protection against cube attacks: If each one of the stream ciphers can be repre-
sented by a low degree multivariate polynomial, their XOR is also a low degree
polynomial which can be attacked just as easily as the individual stream ciphers.

7 Conclusions

In this paper we introduced a new type of cryptanalytic attack and described
some of its applications. It joins the rank of linear, differential, algebraic, and
correlation attacks by being a generic attack that can be applied to many types of
cryptographic schemes. We demonstrated its effectiveness by breaking (both in
theory and with an actual implementation) a standard construction of a stream
cipher which seems to be secure against all the previously known attacks. We
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also used the attack to break simplified Trivium variants with complexity that
is considerably lower than the complexity of previous known attacks. The attack
is likely to be the starting point for a new area of research, and hopefully it will
lead to a better understanding of what makes cryptosystems secure.

Acknowledgements. We would like to thank Shahram Khazaei, Willi Meier
and Paul Crowley for independently verifying our results.
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and gröbner bases-related algebraic cryptanalysis. In: López, J., Qing, S., Okamoto,
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1. In block ciphers, the attacker can try to use a ”meet in the middle” attack.
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which describes the cipher (especially when the number of rounds is relatively
small and these degrees did not hit their maximal possible values). Instead
of equating the given ciphertext bits to their high degree polynomials, the
attacker can equate the two low degree polynomials describing the two halves
of the encryption and get an easier to solve master equation. This technique
can also be extended to the case of double encryptions, where the attacker
has the additional benefit that the secret key bits used in the two polynomials
are disjoint. Note that the attacker can get multiple polynomial equations
for each one of the bits in the middle or for any one of their polynomial
combinations.

2. In some stream ciphers with many initialization rounds, it is difficult to find
the low degree maxterms required for the attack. In these cases, given that
the internal structure of the stream cipher in known, we can try a different
approach: The attacker explicitly represents the state register bits as poly-
nomials in terms of the public and private variables at some intermediate
initialization round. Given this explicit representation, the attacker performs
linearization on the private variables by replacing them with a new set of
private variables, reducing the degrees of the state register bit polynomials.
The values of the new set of private variables can then be recovered using the
basic techniques of the cube attack. After the values of the new private vari-
ables are recovered, the attacker can solve for the original key by solving the
equations obtained during linearization. If the cipher’s state is invertible, or
close to being invertible, the attacker can simply run the cipher backwards
to recover the key, instead of solving equations. Note that a similar tech-
nique may also be used to attack block ciphers, given that the attacker can
explicitly represent the polynomials at some intermediate encryption round.

3. The attacker can benefit from any system of linear equations (even if it has
fewer than n equations), or from any system of nonlinear equations in which
some of the variables occur linearly, by enumerating and testing only their
smaller set of solutions.

4. The attacker can exploit ANY nonlinear superpoly he can find and compactly
represent by guessing some of the secret variables in it and simplifying the
result. In particular, guessing n − 1 key bits will always suffice to turn any
superpoly into an easy to solve linear equation in the remaining variable, and
will thus result in an attack which is faster than exhaustive search, assuming
that the evaluation of the superpoly is not too time consuming.

5. The attacker can try to solve the equations he can derive from the cube
attack even when they are nonlinear, provided that their degrees are low
enough. When m is large, the attacker can sum over many possible subsets
of d − 1 public variables, and get a highly overdefined system of nonlinear
equations which might be solved by linearization or any other technique.

6. The attacker can easily recognize quadratic superpolys by a generalization of
the BLR linearity test: The attacker randomly chooses vectors x1, x2, x3 ∈
{0, 1}n, and verifies that pS(I)[0]+pS(I)[x1]+pS(I)[x2]+pS(I)[x3]+pS(I)[x1+
x2] + pS(I)[x1 + x3] + pS(I)[x2 + x3] + pS(I)[x1 + x2 + x3] = 0. Again, non
quadratic functions are likely to be eliminated after a few tests. The test can
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be further generalized to cubic functions and to polynomials of higher degree
with the number of required function evaluations growing exponentially with
the degree. The coefficient calculation for polynomials of higher degree can
be generalized as well.

7. The attacker can use the cube attack even if he cannot compactly represent
superpolys. In this case, the attacker decides on a subkey (i.e. a subset of
private variables) whose value is guessed during the online phase. For each
value of the subkey bits, the degree of the superpolys in the remaining private
variables is likely to be reduced, and the attacker can compute and store them
more efficiently. Since the cubes and corresponding superpolys are now key-
dependant, they need to be computed and stored for each potential value
of the subkey. This requires more preprocessing time and memory, but gives
the attacker the extra flexibility of using different maxterms for each subset
of keys.

8. The attacker is usually given more than one output bit, and thus more than
one polynomial in the input bits. In addition to trying each one of them
separately, he can test any polynomial combination of these polynomials
and try to find some linear superpolys among these combinations.

9. Note that in the common mode of operation of stream ciphers in which
n = m, and the secret key and public IV bits are XOR’ed together dur-
ing the initialization step, the maximal possible degree of the polynomial
representation of the scheme is n, whereas in the general case the maximal
possible degree is n + m.

10. When the cryptographic scheme has an insufficient number of public vari-
ables (or none at all), we can recast the cube attack as a related key attack in
which we are also allowed to flip some of the secret key bits during the online
phase. By replacing some of the xi variables by the combinations xi + vi, we
may get linear pS(I) polynomials where none existed before.

B Appendix: Cube Attacks on Scaled-Down Trivium
Variants

Trivium [21] is a stream cipher designed in 2005 by C. De Canni‘ere and B.
Preneel and submitted to the Profile 2 (hardware) European project eSTREAM
[20]. It has an exceptionally simple structure, which leads to very good perfor-
mance in both hardware and software. Despite Trivium’s simplicity, there are no
substantial cryptanalytic results against it so far. Due to these outstanding qual-
ities, Trivium was chosen as part of the portfolio for Profile 2 by the eSTREAM
project.

B.1 Description of Trivium

Trivium’s internal state consists of 288 bits stored in three NLFSRs of different
lengths. In each round, each register is shifted by one bit. The feedback to
each register consists of a non linear combination of bits from another register,
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XORed with a bit from the same register. The output bit at the end of each
round is a linear combination of six state bits, two taken from each register.
During initialization, the 80-bit key is placed in the first register, and the 80-bit
IV is placed in the second register. The other state bits are set to zero, except
the last three bits in the third register, which are set to one. The state is then
updated 4 × 288 = 1152 times without producing an output.

B.2 Previous Attacks

Trivium has a simple structure which led many cryptanalysts to try to attack
it. Nevertheless, to this day, there are no attacks better than exhaustive search
on the full version of Trivium. Due to Trivium’s cryptanalytic resistance, scaled-
down variants have been proposed and studied by cryptanalysts hoping to better
understand the full-scale version. Two scaled-down variants named Bivium A
and Bivium B were introduced in [22]. Both of these variants have an internal
state composed of only 2 shift registers. Previous attacks on Trivium and its
Bivium variants are summarized below:

– Raddum [22] developed an algorithm for solving sparse quadratic equations.
The algorithm was used to break Bivium A in ”about a day”, and requires
256 seconds to break Bivium B. The complexity of the attack applied to
Trivium is 2164.

– Maximov and Biryukov [23] developed a technique that can be applied to
Bivium and Trivium. The technique involves guessing certain key bits and
key bit products that reduce the Trivium quadratic equation system to a
linear equation system that can be solved by linear algebra. The technique
can be used to recover the state of Bivium B with complexity of c · 236.1,
and to recover the state of Trivium with complexity of c · 283.5, where the
constant c is the complexity of solving the system of linear equations.

– McDonald, Charnes, and Pieprzyk [24] showed that the MiniSat algorithm
can be used to attack Bivium B with complexity of about 256.

Another family of scaled-down Trivium variants, assumes that fewer than 1152
initialization rounds are performed before producing an output. Previous attacks
on Trivium variants with fewer than 1152 initialization rounds are summarized
below:

– Turan and Kara [25] used linear cryptanalysis to give a linear approximation
with bias 2−31 for Trivium with 288 initialization rounds.

– Englund, Johansson, and Turan [26] developed statistical tests and used
them to show statistical weaknesses of Trivium with up to 736 initialization
rounds. The basic idea is to use a statistical (rather than algebraic) variant
of a cube attack, which selects an IV subset, examines all the keystream
produced by assigning this subset all possible values, while keeping the other
IV bits fixed. The key stream is viewed as a function of the selected IV subset
variables, and statistical tests are performed to distinguish this function from
a random one.
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– Vielhaber [27] recovered 47 key bits of Trivium with 576 initialization rounds
in negligible time. The key bits were recovered after some small IV spe-
cial subsets were found, each one with the following property: The result of
summing on some keystream bit produced by assigning a special subset all
possible IV values, while keeping the other IV bits fixed, is equal to either
one of the key bits or to the sum of two key bits. Note that this is a very
special case of our cube attack, and it is not clear why the author imposed
this unnecessary restriction.

– Fischer, Khazaei, and Meier [28] combined statistical tests with the method
described in [27], and showed an attack on Trivium with 672 initialization
rounds with complexity 255.

The last three attacks share their cube summing element with our attack, but
then proceed in a different way, which does not apply efficient linearity testing
to the resultant superpolys in order to find easy to solve linear equations. Our
greatly improved cryptanalytic results for Trivium clearly demonstrate that cube
attacks are more general, more efficient, and more powerful than these previous
techniques.

B.3 The Attack

We summarize the results we obtained so far for various simplified variants of
Trivium. All the maxterms and their associated linear equations were obtained
by running the preprocessing phase of the cube attack in a high level language
on a single PC over several weeks, and much better results can be expected by
using a more optimized implementation on a cluster of more powerful computers.

– The best known attack on the variant which uses 672 initialization rounds
is described by Fischer, Khazaei, and Meier in [28]. The authors attack this
variant with complexity 255. We were able to find 63 linearly independent
maxterms during the preprocessing phase of the cube attack on this variant
(in fact, we found more, but the additional maxterms do not reduce the
total complexity of the attack). All of the maxterms correspond to cubes of
size 12. The maxterms and cubes are listed in Table 1 next to the summed
output bit index. Both the key bit indexes and the IV bit indexes range from
0 to 79. The output bit index ranges from 672 to 685, hence the attacker
needs up to 14 initial output bits produced by the cipher after the 672 key
mixing rounds. Each of the maxterms passed at least 100 linearity tests, and
thus the maxterm equations are likely to be correct for most keys. During
the online phase of the cube attack, the attacker has to find the values of the
linear equations defined by these maxterms by summing over the 63 cubes,
of size 12. This requires a total of about 218 chosen IVs. After the maxterm
values are computed, the rest of the key can be recovered by exhaustive
search with complexity 217. The total complexity of the attack is thus no
more than 219, which is a big improvement compared to the best known
attack. Note that the maxterms are very sparse, hence the complexity of the
linear algebra in the preprocessing and online phases is negligible.
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– We pushed the attack further by strengthening the Trivium variant to use
735 initialization rounds before producing an output. Currently, there is
no known attack that is better than exhaustive search on this scaled-down
Trivium variant. We were able to find 53 linearly independent maxterms
corresponding to cubes of size 23 (again, we have more). The total complexity
of the online phase of the attack is less than 230, which is much better than
exhaustive search.

– Pushing the attack even further, we were able to find so far 35 maxterms
for the stronger Trivium variant that uses 767 initialization rounds. The
maxterms are listed in Table 2 in the appendix, next to the corresponding
cubes. Most cubes are of size 29, but there are a few cubes of size ranging
from 28 to 31. The complexity of the attack is 245 since it is dominated by
an exhaustive search for the 80−35 = 45 missing key bits, after the values of
the linear equations defined by these maxterms are computed. Computation
on weaker variants shows that once a cube of a certain size that corresponds
to a maxterm is found, we can expect to find many more cubes of the same
size with linear superpolys. Thus, given more preprocessing resources, it is
very likely that the online phase complexity of the attack can be reduced to
about 236.

Our results show that even after many key mixing initializations rounds, Triv-
ium is still breakable with complexity that is significantly faster than exhaustive
search. We are still investigating the resistance of stronger Trivium variants to
cube attacks and their generalizations.

B.4 Details of the New Cube Attacks on Scaled-Down Trivium
Variants

Tables 1 and 2, list the maxterms, cube IV indexes, and output bit indexes for
Trivium with 672 and with 767 initialization rounds respectively. In each one of
the summations in Table 1 , all the public variables that do not belong to the
cube were set to 0. In a few summations in Table 2, some public variables that
do not belong to the cube were set to 1. These are specified in the last column.
IV and key bits are indexed as in the original Trivium specification starting from
0 to 79 (e.g. key bits 65 and 68 and IV bits 68 and 77 determine the output bit
with index 0).
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Table 1. Maxterms for Trivium with 672 Initialization rounds

Maxterm Equation Cube Indexes Output Bit Index
1+x0+x9+x50 {2,13,20,24,37,42,43,46,53,55,57,67} 675

1+x0+x24 {2,12,17,25,37,39,46,48,54,56,65,78} 673
1+x1+x10+x51 {3,14,21,25,38,43,44,47,54,56,58,68} 674

1+x1+x25 {3,13,18,26,38,40,47,49,55,57,66,79} 672
1+x2+x34+x62 {0,5,7,18,21,32,38,43,59,67,73,78} 678
1+x3+x35+x63 {1,6,8,19,22,33,39,44,60,68,74,79} 677

x4 {11,18,20,33,45,47,53,60,61,63,69,78} 675
x5 {5,14,16,18,27,31,37,43,48,55,63,78} 677
x7 {1,3,6,7,12,18,22,38,47,58,67,74} 675

1+x8+x49+x68 {1,12,19,23,36,41,42,45,52,54,56,66} 676
x11 {0,4,9,11,22,24,27,29,44,46,51,76} 684
x12 {0,5,8,11,13,21,22,26,36,38,53,79} 673
x13 {0,5,8,11,13,22,26,36,37,38,53,79} 673

1+x14 {2,5,7,10,14,24,27,39,49,56,57,61} 672
x15 {0,2,9,11,13,37,44,47,49,68,74,78} 685
x16 {1,6,7,12,18,21,29,33,34,45,49,70} 675
x17 {8,11,15,17,26,23,32,42,51,62,64,79} 677
x18 {0,10,16,19,28,31,43,50,53,66,69,79} 676
x19 {4,9,10,15,21,24,32,36,37,48,52,73} 672
x20 {7,10,18,20,23,25,31,45,53,63,71,78} 675

1+x20+x50 {11,16,20,22,35,43,46,51,55,58,62,63} 675
1+x21+x66 {10,13,15,17,30,37,39,42,47,57,73,79} 673

x22 {2,4,21,23,25,41,44,54,58,66,73,78} 673
x23 {3,6,14,21,23,27,32,40,54,57,70,71} 672

1+x24 {3,5,14,16,18,20,33,56,57,65,73,75} 672
1+x28 {6,11,14,19,33,39,44,52,58,60,74,79} 676
x29 {1,7,12,18,21,25,29,45,46,61,68,70} 675
x30 {2,8,13,19,22,26,30,46,47,62,69,71} 674
x31 {3,9,14,20,23,27,31,47,48,63,70,72} 673
x32 {4,10,15,21,24,28,32,48,49,64,71,73} 672
x33 {2,4,6,12,23,29,32,37,46,49,52,76} 680

1+x34+x62 {0,5,7,13,18,21,32,38,43,59,73,78} 678
1+x35+x63 {1,6,8,14,19,22,33,39,44,60,74,79} 677

x36 {2,4,5,8,15,19,27,32,35,57,71,78} 677
x38+x56 {0,3,4,9,20,28,33,41,54,58,72,79} 678

1+x39+x57+x66 {8,11,13,17,23,25,35,45,47,54,70,79} 674
x40+x58+x64 {0,6,10,16,19,31,43,50,66,69,77,79} 676

1+x41 {2,15,17,20,21,37,39,44,46,56,67,73} 674
x42+x60 {1,16,20,22,34,37,38,53,58,69,71,78} 674

x43 {2,7,14,22,41,45,48,58,68,70,72,76} 673
x44+x62 {3,14,16,18,20,23,32,46,56,57,65,73} 672

1+x45+x64 {0,6,10,16,18,28,31,43,53,69,77,79} 676
x46+x55 {2,8,11,13,28,31,35,37,49,51,68,78} 684

x47 {5,8,20,32,36,39,45,51,65,69,76,78} 676
x48 {2,4,10,14,16,22,25,44,49,51,57,78} 678

x49+x62 {1,12,19,23,36,41,42,45,52,56,69,75} 676
x51+x62 {1,7,8,13,21,23,28,30,47,68,71,75} 674

x52 {5,8,9,12,16,18,23,40,44,63,66,70} 674
x53 {2,11,21,24,32,55,57,60,63,66,70,77} 675

1+x54+x60 {4,7,10,18,20,25,50,53,61,63,71,78} 675
x55+x64 {5,12,16,19,22,36,47,55,63,71,77,79} 674
1+x56 {4,9,18,21,23,27,32,38,43,58,67,69} 677
x57 {1,7,9,14,18,21,33,40,45,49,59,68} 675

1+x58 {2,6,12,13,19,23,30,48,55,59,69,79} 673
x60 {5,7,10,13,15,17,28,40,47,73,76,79} 681
x61 {13,21,24,39,42,46,48,51,55,61,72,78} 673

1+x62 {2,4,10,11,19,34,47,55,56,58,69,77} 674
x63 {5,7,10,15,17,35,40,47,52,57,76,79} 674
x64 {8,11,13,17,23,25,35,47,62,64,68,79} 673
x65 {2,3,13,15,19,29,32,37,39,51,76,79} 682

1+x66 {5,7,10,13,15,17,35,40,52,70,76,79} 678
1+x67 {5,20,24,29,33,35,37,39,63,65,74,78} 677
1+x68 {1,12,19,23,36,41,52,54,56,66,69,75} 676
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Table 2. Maxterms for Trivium with 767 Initialization rounds

Maxterm Equation Cube Indexes Output Variables set to 1
1+x0 {1,3,4,7,9,10,12,16,19,21,25,27,29,30,32,34,35,37,40,47,50,51,60,61,64,67,72,73,79} 769
x3 {0,3,6,9,12,15,18,21,24,27,30,32,37,40,43,44,48,50,53,57,59,61,63,64,66,68,71,73,77,79} 773 {11}
x20 {1,3,5,7,10,14,18,20,22,23,26,30,36,38,42,43,44,45,47,49,52,54,60,63,69,71,72,73,78} 770 {53}
x22 {1,3,5,7,10,12,14,16,18,20,23,26,30,39,41,42,43,47,50,52,53,55,58,60,61,64,69,71,78} 769
x23 {0,2,4,6,8,10,14,17,19,21,23,26,30,34,35,36,43,45,46,48,49,54,59,64,67,72,73,74,75,79} 767

1+x29 {1,3,5,7,10,12,14,17,20,22,24,30,32,34,37,38,40,41,48,50,54,56,58,59,65,66,68,70,78} 774
x30 {0,2,4,6,8,10,14,17,19,21,23,26,30,33,34,35,36,43,45,46,49,54,57,59,62,64,72,73,75,79} 773 {67}

1+x31 {0,2,4,6,8,10,13,14,17,19,21,23,26,30,31,34,35,36,37,42,53,60,61,64,66,69,72,73,77,79} 773
x32 {0,2,4,6,8,10,14,17,19,21,23,25,26,27,30,32,34,43,44,53,58,63,68,70,71,72,75,78,79} 772 {33,37,38}

1+x33+x60+x66+x68 {1,3,5,7,10,14,18,20,23,26,30,35,37,39,40,41,44,48,49,51,54,58,59,60,61,64,70,75,77,78} 772
1+x34 {1,3,5,7,10,12,14,16,17,20,24,28,30,33,34,36,40,42,45,46,51,52,54,56,62,66,70,77,78} 770 {76}
x35 {1,3,4,6,7,8,9,12,14,16,19,21,25,27,30,38,41,44,45,48,50,55,57,60,63,65,71,73,79} 769
x36 {0,2,4,5,6,8,10,14,17,19,21,23,26,27,30,37,39,40,47,48,55,62,65,70,73,75,77,78,79} 768 {54}
x37 {1,3,5,7,10,12,14,16,17,20,24,26,30,32,35,37,41,45,46,54,58,60,64,67,68,69,70,72,78} 770
x38 {0,2,4,6,8,10,14,17,19,23,25,26,30,34,36,38,40,42,44,53,56,57,60,63,69,72,73,75,79} 768 {39}
x41 {0,1,3,4,7,10,12,15,17,19,22,24,25,28,30,34,39,42,44,52,56,58,59,62,64,68,70,72,79} 773 {71}

1+x45 {1,3,5,7,10,12,14,16,18,20,22,23,26,30,33,39,42,43,47,50,52,53,55,58,60,64,71,77,78} 769
1+x46 {1,3,5,8,11,14,16,17,19,21,23,26,27,29,30,32,36,38,42,44,45,49,51,53,59,60,63,64,75,76,78} 771
x51 {0,2,4,6,8,10,14,17,19,23,26,30,33,38,39,41,43,46,47,50,54,58,59,60,62,63,64,71,72,77,79} 773

1+x53+x57 {1,3,5,7,10,14,16,18,20,23,26,30,35,37,39,41,44,48,49,51,54,58,60,64,68,70,75,77,78} 773 {40,61}
x54 {0,2,4,6,8,10,14,17,19,23,26,30,33,38,39,41,43,46,50,54,59,60,61,62,63,64,70,74,77,79} 767

1+x55 {1,3,5,7,10,12,14,17,18,20,24,27,30,33,36,38,40,41,44,53,56,59,61,66,68,72,75,76,78} 771
x56 {1,3,5,7,9,12,14,16,19,21,23,25,27,30,35,37,40,51,56,62,63,64,67,69,71,74,75,76,79} 769

1+x57 {1,3,5,7,10,12,14,17,20,24,30,32,34,37,38,40,48,50,52,54,56,57,58,59,63,66,68,70,78} 774
x58 {0,2,4,6,8,10,14,17,19,21,23,26,30,33,36,43,45,48,49,54,57,59,62,64,67,72,74,75,79} 767

x59+x65 {1,3,5,7,10,12,14,17,20,22,24,26,28,30,35,40,41,42,44,52,54,60,65,67,68,73,74,75,78} 773
x60 {2,4,10,13,15,19,23,25,27,31,33,34,37,40,41,45,48,50,51,54,56,60,61,62,67,69,71,73,76} 770

1+x60+x66 {1,3,4,5,7,9,12,16,19,21,25,27,30,32,33,35,38,40,43,45,47,51,55,57,59,60,62,75,79} 774
x61 {3,5,11,14,16,20,24,26,28,32,34,35,38,41,42,46,49,51,52,55,57,61,62,63,68,70,72,74,77} 769
x62 {1,3,5,7,10,12,14,17,20,22,24,26,28,30,35,40,41,42,44,47,52,54,65,66,67,68,73,75,78} 772

1+x62+x68 {1,3,5,7,10,12,14,17,20,22,24,26,28,30,35,40,41,42,44,47,52,59,60,67,68,73,75,77,78} 773
x63 {2,4,8,10,13,15,19,23,27,31,33,37,40,41,45,48,50,54,56,60,61,62,67,69,71,73,76,78} 770
x64 {3,5,9,11,14,16,20,24,28,32,34,38,41,42,46,49,51,55,57,61,62,63,68,70,72,74,77,79} 769
x65 {0,2,4,6,7,8,10,14,17,19,21,23,26,30,32,34,36,37,39,41,43,45,55,56,61,66,74,76,79} 767

1+x67 {2,4,6,8,11,13,15,17,19,21,23,24,27,31,34,40,42,43,44,48,51,56,59,61,65,70,72,78,79} 768
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